
DreamScape: A Multi-Effect
Guitar Sequencer

Team: sddec18-21
Calyn Gimse, Derrick Lawrence, Tyler McAnally,

Charles Rigsby, Karla Beas

Problem Statement
● Effect Pedals play an important role in live performances.

○ Multiple effects require stringing multiple pedals with each other and become complex and
messy

○ Effects in parallel not easily possible with standard effect pedals

● Configuration of configurable boards on market unintuitive
○ Many still only accept one effect at a time or only effects in series
○ Configuration of presets only allow one on the board at a time

● Our plan is to design a pedal-board that allows free configuration of effects
○ Intuitive UI
○ Multiple presets loaded to free-switch in the middle of a set
○ Efficient signal processing
○ Modular preset design to allow for additional effects to be added in the future

Our Solution
● Raspberry Pi microcontroller used to process signals

○ ADC/DAC circuit used to send signals to/from the Pi

● Android Application used to configure presets with the board
● Display on board used to show current selected preset
● Board takes input from a guitar, output to an amplifier

○ Input stage can accept a signal from any source with an amplitude between 50 mVpp
and 4.5 Vpp

Project Design-Software

● Signal Processing code written in C
● Bluetooth Socket methods written in Python
● Reads preset files to set proper effect configuration
● Takes in an input signal from ADC input
● Outputs the processed signal to DAC output
● Individual effects are separate methods that modify the signal
● Some effects were referenced from PedalPi, an Open Source lo-fi

single-effect pedalboard.
○ Most effects were edited for our purposes
○ Some effects (such as loopers) are 100% original.

● Early testing of effects used with wavefiles outputted through auxillary output
using PortAudio Open Source Library.

● X11 Libarary used to display simplistic UI on the board.

Project Design-Software
Preset Format:

● Verification string (447448)
● Preset name prefixed with NAME
● START starts input, END signals end of preset
● STEP signals moving to the next layer
● Effect:

○ Name
○ Effect-specific Vals (optional)
○ Options bit (optional, usage varies)
○ Effect Weight (not on NOSOUND)
○ Which layer to get sound from (0=default)

Project Design-Software
List of Effects:

● Clean:Output unaltered sound
● Bitcrush: Shift sound left by n bits
● Booster: Boost audio by a fractional value
● Delay: Adds a delay to outputted sound
● Distortion: Cap highest and lowest possible sound
● Echo: Plays a delayed sound that tapers off
● Fuzz: Sets signal above/below a threshold to max/0
● Tremolo: Compares amplitude with a waveform to change audio volume in a

sine wave
● NoSound: Output nothing.
● Octaver: Shifts pitch of audio by changing the speed at which the sound

outputs, can also be a looper
● Loopers: See Next Slide

Project Design-Software
Looper Effects

● Accidental novel discovery
● Records an audio signal, and repeats the signal on an infinite loop
● Options to wipe audio or record over recorded audio
● Recorded audio can be outputted many ways:

○ Standard (Looper)
○ Reverse (InvertLooper)
○ Forward/Backward (or vice-versa)
○ At a different pitch/speed (Octaver)

● Looper buffer can be statically set, or dynamically set when recorded (to a
certain limit)

Project Design-Application
● Application developed in Android
● Communicates with Software via Bluetooth socket
● Sends/receives commands and preset files

○ Can send commands to change presets in software
○ Deprecated by footpedals but still implemented

● Configures and saves presets internally

Project Design-Application
Preset Configuration Activity:

● Shows a list of presets stored on the device
● Can download presets from the board and add to the list
● Can upload presets onto the board
● Can create new(blank) presets
● Can edit presets

Project Design-Application
Preset edit activity:

● Shows a simplistic diagram of the effect mux
● More/Less effects can be added in parallel

○ Preset file stores unused spots as NOSOUND effects

● Tapping a preset opens a configuration box
○ Fields are unique to each effect

Project Design-Hardware
IC overview:

● ADC used to convert guitar signal to binary data for DSP stage
● DAC advantageous over PWM for D-to-A reconstruction
● Dual package Op-Amp used for input and output stage
● Chips used were specced with a Vdd supplied by Pi3 +5V rail

Project Design-Hardware
Input Stage:

● 4th order band-pass filter to remove
noise and high order harmonics

● Bias network to prevent negative
voltage input to ADC

● Op-Amp provides low impedance
source per ADC datasheet

● Active pickups require removal of top
panel

Project Design-Hardware
Output stage:

● 2nd order band-pass filter
● Unity buffer to provide low

output impedance
● DC blocking capacitor to

remove the bias of the DAC
output.

Project Design-Hardware
Switching and Display:

● Rugged, momentary contact push-button
switches used for switching

● +3.3V Pi3 rail, along with 10k series resistor
keep current draw low

● +5V, 4A power supply with Micro-usb splitter to
power Pi and HDMI display

○ Pi3 suggested current rating of 2.5A max and display
requires 600mA

● Display panel large enough to see across stage
by performer

Project Design-Enclosure
● Solidworks used to model the enclosure and DXF export for CNC milling
● Made of wood with plexi-glass display cover

○ Cheap, durable, and easily workable - weather resistant with attentive care

● Hardware mounted to underside of top panel for easy removal

Project Cost Analysis

● Tablet - $60
● Raspberry Pi3 - $35
● Terminal Block Pi Shield - $20
● HDMI Display - $80
● Foot Switches - $60
● Power Supply - $20
● Interconnects - $30
● IC Chips - $10
● Passive Components - $20
● Prototyping + Leftover - $150

Enclosure:

● Wood - $20
● Screws - $10
● Brackets & Standoffs - $10
● Plexiglass - $5
● Paint - $15
● Other - $10

Total Project Cost = $555

Demo

Questions?

